

Electrostatics

* Forces & static interactions of electrically charged particles *

Begin by jumping into some examples,
break it down throughout.

Coulomb's Law

Describes force acting on charge from other charges
in the system/nearby

* Like charges repel, opposites attract *

important

$$F = \frac{kq_1 q_2}{r_{12}^2} \hat{r}_{12}$$

q_1 - charge of particle 1

q_2 - charge of particle 2

k - constant

r_{12} - distance between charges

\hat{r}_{12} - unit vector from point 1 to point 2

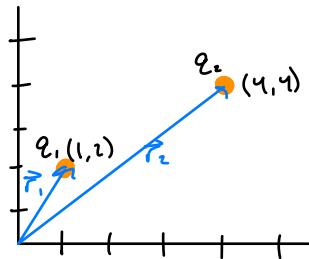
Formula describes force
exerted on charge 2 by
charge 1

double check this

Note on Notation: $F_{12} \Rightarrow$ Force exerted on charge 2 by charge 1

* unit vector does not indicate direction of force on its own
↳ need to consider sign of each charge

↳ * just line along which force is exerted



Location/position of each particle
can be denoted w/ vector

$$\vec{r}_1 = \langle 1, 2 \rangle = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{r}_2 = \langle 4, 4 \rangle = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Q: Official notation
for position of
particle?
↳ specific variable
I should use?

Vector pointing from q_1 to q_2 is \vec{r}_{12}

*I think r .

$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$$

$$= \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Arithmetic is important...

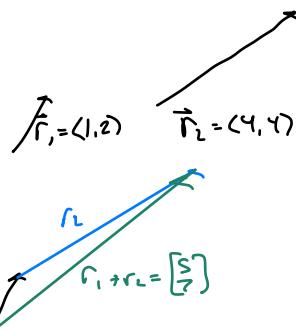
Quick note on vector arithmetic.

Add 2 vectors \rightarrow tip to tail

$$\vec{r}_1 + \vec{r}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

tip of \vec{r}_1 to tail of \vec{r}_2

*Same if you do $\vec{r}_2 + \vec{r}_1 \rightarrow$ tip of \vec{r}_2 to tail of \vec{r}_1



Subtract 2 vectors \rightarrow add the negative

$$\vec{r}_2 - \vec{r}_1 = \vec{r}_2 + (-\vec{r}_1) \text{ - equivalent expression}$$

This is the way I like to do vector subtraction

Negative of a vector just flips it

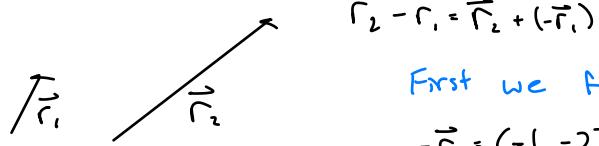
$$\vec{r}_1 = \langle 1, 2 \rangle$$

$$\begin{array}{c} \uparrow \\ -\vec{r}_1 = \langle -1, -2 \rangle \end{array}$$

so subtracting is adding the flipped vector

$$\vec{r}_2 - \vec{r}_1 = \langle 4, 4 \rangle - \langle 1, 2 \rangle = \langle 3, 2 \rangle$$

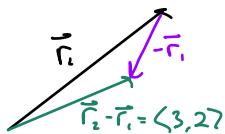
Adding the negative is more for visualizing vector subtraction



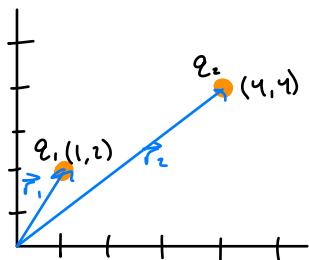
First we find the negative \vec{R}_1

$$-\vec{R}_1 = (-1, -2)$$

Then add to \vec{R}_2 , tip to tail



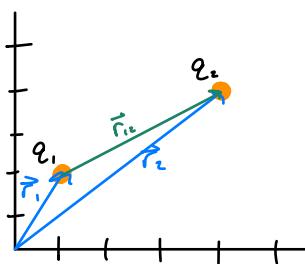
Returning to electrostatics problem...



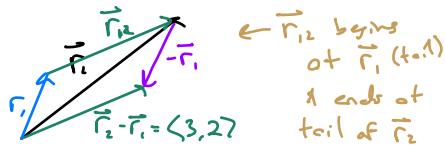
$$* \vec{R}_2 - \vec{R}_1 = \vec{R}_{12}$$

\vec{R}_{12} points from \vec{R}_1 to \vec{R}_2

↳ force from q_1 acting on q_2



Take result of vector subtraction
↓ position it accordingly
↳ i.e. it does NOT start at origin



Length & Unit Vector

$|\vec{R}_{12}|$ - magnitude/length of vector \vec{R}_{12}

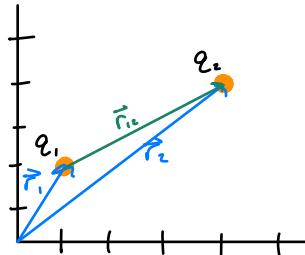
\hat{R}_{12} - unit vector pointing in direction of \vec{R}_{12} (from $\vec{R}_1 (q_1)$ to $\vec{R}_2 (q_2)$)

$$\text{Magnitude: } |\vec{V}| = \sqrt{V_1^2 + V_2^2}$$

$$\text{Unit Vector: } \hat{V} = \frac{\vec{V}}{|\vec{V}|}$$

Since we are working in 2-d space
Generally, if $\vec{V} \in \mathbb{R}^n$ then

$$|\vec{V}| = \sqrt{V_1^2 + V_2^2 + \dots + V_n^2}$$



Consider...

$$q_1 = +1\text{ nC}$$

$$q_2 = +2\text{ nC}$$

$$\vec{r}_{12} = \langle 3, 2 \rangle$$

$$|\vec{r}_{12}| = r_{12} = \sqrt{(3)^2 + (2)^2} = \sqrt{13}$$

Could've picked better example

* Coulomb Constant *
 $k = 8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$

* Force acting in 2 directions so need to find x & y components

$$\vec{F}_{12,2D} \quad F_x = F_{12} \cos \theta \quad \theta = \tan^{-1} \left(\frac{y}{x} \right)$$

$$F_y = F_{12} \sin \theta$$

Good thing I'm starting from section 1. I don't have the fundamentals down as well as I thought.

→ Going to walk through what I believe correct process is before checking notes. Going to do more formalized problem.

System consists of 2 charges. $q_1 = +2\text{ nC}$ $q_2 = +3\text{ nC}$.

Position of each particle is: $\vec{r}_1 = \langle 1, 3 \rangle$ $\vec{r}_2 = \langle 4, 5 \rangle$.

Find magnitude of force between the two charges & direction of force each exerts on the other.

Magnitude of force only requires distance between particles
It is also necessary (I believe) for calculating F_x & F_y

$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1 = \langle 4, 5 \rangle - \langle 1, 3 \rangle = \langle 3, 2 \rangle$$

$$|\vec{r}_{12}| = r_{12} = \sqrt{(3)^2 + (2)^2} = \sqrt{9+4} = \sqrt{13}$$

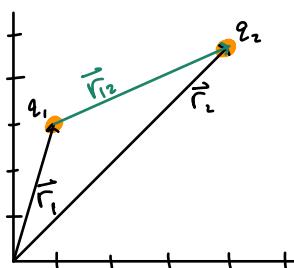
$$|\vec{F}_{12}| = F_{12} = \frac{|k| q_1 q_2}{r_{12}^2}$$

Notice MAGNITUDE of force doesn't care about sign of charges or unit vector.

related?

* Magnitude of electric static force is proportional to magnitude of product of 2 charges (larger magnitude charge → larger magnitude force)

* $|\vec{F}_{12}|$ inversely proportional to distance between 2 charges



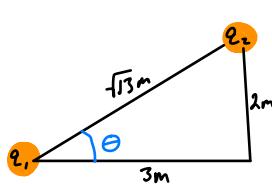
$$F_{12} = \frac{k|q_1 q_2|}{r_{12}^2} = \frac{(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2})(2.0 \times 10^{-6} \text{C})(3.0 \times 10^{-6} \text{C})}{(\sqrt{13} \text{ m})^2}$$

$$= 0.0041 \text{ N}$$

$$F_{12} = 4.1 \times 10^{-3} \text{ N}$$

Magnitude of force should always be positive.

Now break down component-wise



$$\theta = \tan^{-1} \left(\frac{y}{x} \right)$$

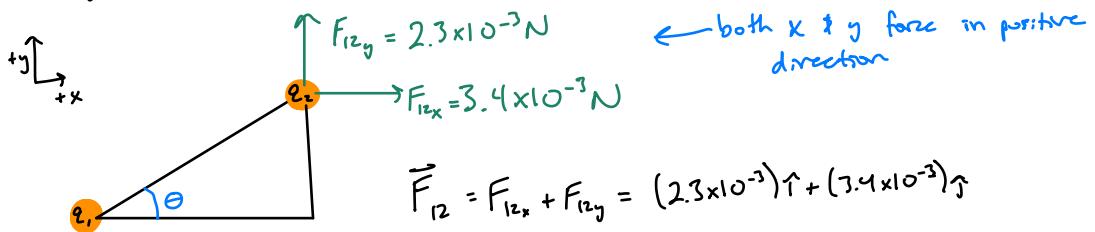
*make sure calculator is in degrees

$$= \tan^{-1} \left(\frac{2}{3} \right)$$

$$\theta \approx 33.7^\circ$$

$$F_{12x} = F_{12} \cos \theta = (4.1 \times 10^{-3} \text{ N}) \cos(33.7^\circ) = 0.0034 = 3.4 \times 10^{-3} \text{ N}$$

$$F_{12y} = F_{12} \sin \theta = (4.1 \times 10^{-3} \text{ N}) \sin(33.7^\circ) = 0.00227 = 2.3 \times 10^{-3} \text{ N}$$



*Note - if q_1 & q_2 had opposite signs they would be attracted to one another.

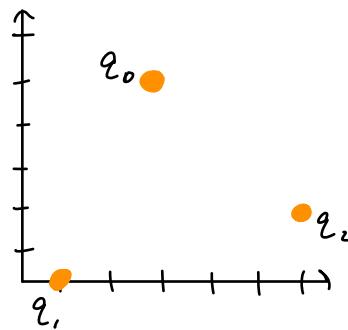
Magnitude of force would be same but direction would be different

Could calculate direction of force on q_1 , but going to move on instead

Now consider a system of point charges. 3 or more

*Superposition Principle - (in context of Coulomb's Law)

↳ Total force \vec{F}_{net} acting on a particle is the sum of individual forces from other charges in system



Consider system of point charges.

$$q_0 = +20 \text{nC} \quad q_1 = -30 \text{nC} \quad q_2 = +25 \text{nC}$$

$$\vec{r}_0 = \langle 3, 5 \rangle \quad \vec{r}_1 = \langle 1, 0 \rangle \quad \vec{r}_2 = \langle 6, 2 \rangle$$

Find total force, \vec{F}_{net} , exerted on q_0 .

$$\vec{F}_{\text{net}} = \vec{F}_{10} + \vec{F}_{20} \quad \leftarrow \text{Superposition principle}$$

For charge q_0 in system
w/ n other charges

Total force on q_0 is
sum of individual forces

$$\vec{F}_{\text{net}} = \sum_{i=1}^n \vec{F}_{i0}$$

Calculate each force individually

$$\vec{F}_{10}:$$
$$\vec{r}_{10} = \vec{r}_0 - \vec{r}_1 = \langle 3, 5 \rangle - \langle 1, 0 \rangle = \langle 2, 5 \rangle$$
$$|\vec{r}_{10}| = r_{10} = \sqrt{2^2 + 5^2} = \sqrt{29}$$
$$\theta = \tan^{-1}\left(\frac{5}{2}\right) \approx 68.2^\circ$$

$$|\vec{F}_{10}| = F_{10} = \frac{k|q_0 q_1|}{r_{10}^2} = \frac{(8.99 \times 10^9) |(20 \times 10^{-9})(-30 \times 10^{-9})|}{(\sqrt{29})^2} = 1.86 \times 10^{-7} \text{ N}$$

$$F_{10x} = F_{10} \cos \theta = (1.86 \times 10^{-7} \text{ N}) \cos(68.2^\circ) = 6.91 \times 10^{-8}$$

$$F_{10y} = F_{10} \sin \theta = (1.86 \times 10^{-7} \text{ N}) \sin(68.2^\circ) = 1.73 \times 10^{-7}$$

This gives magnitude but we can adjust to get direction as well

UNIT vector gives direction

$$\hat{F}_{10} = \frac{k q_0 q_1}{r_{10}^2} \hat{r}_{10}$$
~~$$\hat{r}_{10} = \frac{\vec{r}_{10}}{|\vec{r}_{10}|} = \left\langle \frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \right\rangle = \left\langle \frac{2}{\sqrt{29}} \right\rangle \hat{i} + \left\langle \frac{5}{\sqrt{29}} \right\rangle \hat{j}$$~~

* Need to incorporate direction right away. I know q_0 is (+) & q_1 is (-) so force on q_0 will be TOWARDS q_1 . So both x & y components of force should be negative.

$$\hat{r}_{10} = \left\langle -\frac{2}{\sqrt{29}} \right\rangle \hat{i} + \left\langle -\frac{5}{\sqrt{29}} \right\rangle \hat{j} = \left\langle -\frac{2}{\sqrt{29}}, -\frac{5}{\sqrt{29}} \right\rangle$$

$$\vec{F}_{10} = \left[\frac{kq_0q_1}{r_{10}^2} \right] \left[\left(-\frac{z}{r_{10}} \right) \hat{i} + \left(-\frac{y}{r_{10}} \right) \hat{j} \right]$$

* Could have left \hat{r}_{10} (+) & had force negative?

$$= (1.86 \times 10^{-7} N) \left[\left(-\frac{z}{r_{10}} \right) \hat{i} + \left(-\frac{y}{r_{10}} \right) \hat{j} \right]$$

$$\vec{F}_{10} = (-6.91 \times 10^{-8}) \hat{i} + (-1.73 \times 10^{-7}) \hat{j}$$

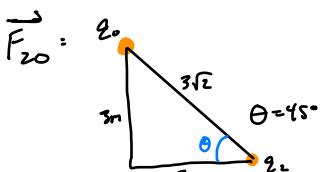
same magnitude as before only
we now included correct direction

q_1 exerts $6.91 \times 10^{-8} N$ of force on q_0 in negative x-direction
 $1.73 \times 10^{-7} N$ of force on q_0 in negative y-direction

Confirm total magnitude checks out

$$F_{10} = \sqrt{F_{10x}^2 + F_{10y}^2} = \sqrt{(6.91 \times 10^{-8})^2 + (1.73 \times 10^{-7})^2} = 1.86 \times 10^{-7} N \quad \checkmark$$

* KEY TAKEAWAY → MAKE SURE YOU PAY ATTENTION TO SIGNS



$$\vec{r}_{20} = \vec{r}_0 - \vec{r}_2 = \langle 3, 5 \rangle - \langle 6, 2 \rangle = \langle -3, 3 \rangle$$

$$\hat{r}_{20} = \frac{\vec{r}_{20}}{r_{20}} = \frac{\langle -3, 3 \rangle}{3\sqrt{2}} = \left(-\frac{1}{\sqrt{2}} \right) \hat{i} + \left(\frac{1}{\sqrt{2}} \right) \hat{j}$$

$$\vec{F}_{20} = \frac{kq_0q_2}{r_{20}^2} \hat{r}_{20}$$

$$= \left[\frac{(8.99 \times 10^9)(20 \times 10^{-9})(2.5 \times 10^{-9})}{(3\sqrt{2})^2} \right] \left[\left(-\frac{1}{\sqrt{2}} \right) \hat{i} + \left(\frac{1}{\sqrt{2}} \right) \hat{j} \right]$$

$$= (2.497 \times 10^{-7}) \left[\left(-\frac{1}{\sqrt{2}} \right) \hat{i} + \left(\frac{1}{\sqrt{2}} \right) \hat{j} \right]$$

$$\vec{F}_{20} = (-1.77 \times 10^{-7}) \hat{i} + (1.77 \times 10^{-7}) \hat{j}$$

Can confirm by looking at diagram. Both q_0 & q_2 are positive so force on q_0 will be away from q_2 so in negative x & positive y directions

I think doing

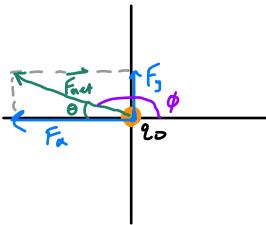
$$F = \frac{kq_0q_2}{r_{10}^2} \vec{r}_{10}$$

w/ no abs values & original unit vector would make it easier

$$\cancel{\vec{F}_{\text{net}} = \vec{F}_x + \vec{F}_y}$$

$$\cancel{\vec{F}_x = \vec{F}_{10x} + \vec{F}_{20x}} = \left[(-6.91 \times 10^{-8}) \uparrow + (-1.73 \times 10^{-7}) \uparrow \right] + \left[(1.77 \times 10^{-7}) \uparrow + (1.77 \times 10^{-7}) \uparrow \right]$$
$$\vec{F}_{\text{net}} = \vec{F}_{10} + \vec{F}_{20}$$
$$\boxed{\vec{F}_{\text{net}} = (-2.46 \times 10^{-7}) \uparrow + (4.0 \times 10^{-9}) \uparrow}$$

Can find magnitude & direction (angle)



$$|\vec{F}| = \sqrt{F_x^2 + F_y^2} = \sqrt{(-2.46 \times 10^{-7})^2 + (4.0 \times 10^{-9})^2} \\ = 2.46 \times 10^{-7}$$
$$\theta = \tan^{-1} \left(\frac{4.0 \times 10^{-9}}{-2.46 \times 10^{-7}} \right) \approx -0.93^\circ$$

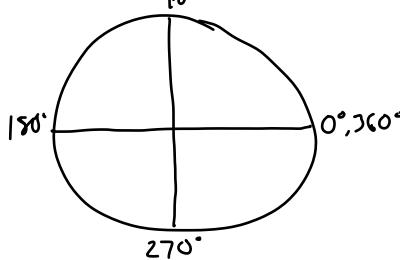
This is part 1 feed / I made mistakes, but it does check out
Consider angle ϕ measures direction of force from $+x$ direction

$$\phi = 180^\circ - \theta = 180.93^\circ$$

Okay, nevermind. My tris is a bit rusty but I'm going to
break this down

I guess θ is being measured in opposite direction

Consider unit circle



* Should have been
 $\phi = (180 + \theta)$ not θ

If force vector looked like

$$\tan^{-1} \left(\frac{-y}{-x} \right) = +\theta$$

result would have
been greater
than 180°

Degrees increase as you go counterclockwise

So considering $-x$ axis as 0 & measuring

θ clockwise should result in $(-)$ angle

I guess my question is just how I should
present my answer

• I just need to be aware the signs of
 θ can be weird.

* Important thing is I am explicit & stay
consistent w/ which directions I indicate
as positive

Can say 0.93° above $-x$ axis
or 179.07° from $+x$ axis
(standard unit circle convention)